

Sketch3D.pl

This builds upon the previously-discussed Sketch
package which builds around the Hershey fonts to
create a drawing in the horizontal and vertical
dimensions (2D). The two-dimensional version
has been previously discussed. The three-
dimension version takes the 2d planes and installs
them in the 3d "theater".

Major Strength: builds on previous work

Major Weirdness (current): you need to establish
planes to do anything.

Major Limitation (current); no version of hidden
line "assist"

loadMacros(
"PGstandard.pl",
 "MathObjects.pl",
"PGchoicemacros.pl",
"Sketch3D.pl",
);

Sketch3D.pl should be placed in your "macros" directory.

It is then loaded in the same manner as other packages.

%ruler = (
start =>"SS0W4W R l4W0W0O3O R4W4V R3W3V R2W2V
R1W1V R0W0Q C0S",
continue =>"SS4W>W R l>W4W R5W5U R6W6V R7W7V
R8W8V R9W9V R:W:T R;W;V R<W<V R=W=V R>W>V R3O=O
C:S",
);

This is the text strings that make the ruler.

The logic of this is described in the documentation for drawing 2d
sketches. (uploaded previously)

$measure =Sketch3D->new(1600,0.1); No surprises here: the object is created in an ordinary way.

The dots (1600) is set high as I am going to print these for the
students.

$measure ->SetObserver(2.5*$X,-2*$X,1.5*$Z,0,0,0); Six arguments here:

The first three are the x,y,z (theater) coordinates for the location of
the observer.

The second three are the x,y,z (theater) coordinates for the point in
space at which the observer is looking.

#$measure ->SetNoseSpin(30); For completeness only:

The observer is looking at a point is space - he may also rotate his
head. In degrees.

$measure ->MakeMatrix(); Just really needs to be there.

And as there is typically only one observer it only needs to be there
once, for that observer.

The transformation is:
- translation of coordinates so that the observer is at the origin
- rotation so that the z'-axis points in the same direction that the
observer is looking.
- basic triangle trigonometry.

MakeMatrix() constructs the rotation matrix required.

$measure ->SelectPlane(0);
$measure ->BuildPlane(0,0,0,1,0,0,0,1,0);

There is always a current plane and it is identified by a number.

Here we select a plane (ie. pick a number), and then we build it.

9 - arguments

first three - the location in theater coordinates that correspond to
(0,0) in the 2d plane

second three - in theater coordinate, the direction in which the
horizontal (x) 2d coordinate should point. (bases vector)

third three - in theater coordinate, the direction in which the vertical
(y) 2d coordinate should point. (bases vector)

vectors are normalized - skewed vectors are at the programmer's
peril.

$measure ->BuildCaptionPlane(2*$X,2.5*$X,,0,0,0,1);

$measure->caption("BRASS OR COPPER ?",1,0);

"An out-of-body experience"

This pops and pushes to the caption stack (see the 2d documentation)

A new plane is created with its origin at the point (3d point in theater
coordinates) that was stored for a caption. A new caption is pushed to
the caption stack with 2d coordinates (0,0)

The six arguments are the bases vectors for the horizontal and
vertical of the caption

The subsequent "caption" call will pop the (0,0) off the stack and the
caption will be drawn at the origin of the plane that has been build.

It was done this way as there can be other kinds of captions. I have
somewhere (not here) a caption type that will draw mixed numbers.
Other types of captions may well be constructed in the future.

$measure ->SelectPlane(1);
$measure ->BuildPlane(0,0,$Z,1,0,0,0,1,0);

$measure ->SelectPlane(2);
$measure ->BuildPlane($X,0,0,0,1,0,0,0,1);

$measure->figure("SSRRRR Ixyz SR RRRxRxy SSxyxRRRRyxy F
BRRxy RRR SRRR RxR SSxR ST FSS C BRRyz SW FSS",($X,$Y,
$Z));

Two planes have been built as described above.

the "figure"
This has been described in the 2d documentation.
except for the space SR and the space SS

Here we switch planes on the fly possibly drawing a straight line
between the two.

space SR means you switch to plane R-R = 0
space SS means you switch to plane S-R = 1
space SW means you switch to plane W-R = 5

"Divide by Zero" errors Think about it as being poked in the eye; it is the programmer's
responsibility to keep the objects out of the plane of the observer

